Para
una matriz A se definen tres operaciones elementales
por renglones (o columnas), nos remitiremos a las operaciones por renglones.
Cuando se efectúan las operaciones elementales se obtiene una matriz
equivalente y se utiliza el símbolo de equivalencia.
I. Intercambiar
dos renglones
Ejemplo: si intercambiamos el renglón 1 y 3:
II. Multiplicar
un renglón por una constante distinta de cero
Ejemplo: si multiplicamos el renglón 3 por 2:
III. Sumar
un renglón a otro renglón
Ejemplo: si sumamos el renglón 3 al
renglón 2:
Las
operaciones II y III se combinan para sumar un múltiplo de un renglón a
otro.
Ejemplo
(I) Comenzamos con la matriz:
(I) Comenzamos con la matriz:
(II)
Multiplicamos el renglón 1 por 2:
(III)
Sumamos el renglón 1 al renglón 2:
(IV)
Finalmente multiplicamos por el
renglón 1 (lo cual anula el paso (II) ):
Ahorrando
pasos podemos escribir simplemente:
Cabe
mencionar que las operaciones elementales se utilizan para «generar ceros» en
lugares especiales de la matriz.
No hay comentarios:
Publicar un comentario