INTEGRACIÓN POR PARTES
El método de integración por partes está basado en la derivada de un producto de funciones como se muestra a continuación:
d(u.v) = u dv + v du
por eso es que se usa para integrales que contienen dos funciones que se multiplican entre si.
∫d(u.v) = ∫u dv + ∫v du (se integra en ambos lados de la fórmula)
(u.v) = ∫u dv + ∫v du (resolviendo la integral)
∫u dv = u v - ∫v du (despejando, queda la fórmula de la integración por partes)
Se llama integración por partes, porque la integral se divide en dos partes una u y otra dv. La integral debe estar completa y sin alterar la operación dentro de ella. Esta selección es lo más importante y se debe realizar de la siguiente manera
1.- En la parte que corresponde a dv debe ser la función más fácil de integrar,
2.- En u deben ir aquellas funciones que no tienen integral directa (funciones logarítmicas e inversas), luego se pueden considerar las funciones algebraicas puesto que la derivada es reductiva. Las funciones trigonométricas y exponenciales son más sencillas de trabajar.
Una de las reglas para saber si el procedimiento realizado es correcto la integral resultante debe ser más sencilla que la original o sino de igual dificultad.
No hay comentarios:
Publicar un comentario